Integr8: Towards a clinical prototype scintillator-based proton radiography system

Saad Shaikh¹, Ryan Fullarton, Mikael Simard, Savanna Chung, Daniel G. Robertson, Sam Beddar, Colin Baker, Charles-Antoine Collins Fekete

¹saad.shaikh@ucl.ac.uk

Overview

- Objective: develop a detector for integrated mode proton radiography capable of real-time tracking lung breathing motion.
- Aim: address significant source of proton range uncertainty in the treatment of lung cancer, unlocking possibility for dose-escalation and improved patient outcomes¹.
- Part 1: preliminary lung motion tracking results with V1 prototype detector.
- Part 2: discuss challenges and showcase V2 of integrated mode proton radiography detector.

¹Landau et al. (2016) *IDEAL-CRT: A Phase 1/2 Trial of Isotoxic Dose-Escalated Radiation Therapy and Concurrent Chemotherapy in Patients With Stage II/III Non-Small Cell Lung Cancer.* DOI: <u>10.1016/j.ijrobp.2016.03.031</u>

Imaging lung tumor motion using integratedmode proton radiography - A phantom study towards tumor tracking in proton radiotherapy

Ryan Fullarton¹, Mikael Simard¹, Lennart Volz², Allison Toltz³, Savanna Chung³, Christoph Schuy², Daniel G. Robertson⁴, Gary Royle¹, Sam Beddar⁵, Colin Baker³, Christian Graeff², Charles-Antoine Collins Fekete¹

¹Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, UK
²Biophysics, GSI Helmholtz Centre for Heavy Ion Research GmbH, Darmstadt, Germany
³Department of Radiotherapy Physics, University College London Hospital, NHS Foundation Trust, London
⁴Division of Medical Physics, Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
⁵Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Detector for Integrated Proton Imaging

- Monolithic polystyrene scintillator block imaged with 3 CCD cameras:
 - Scintillator: 20 x 20 x 25 cm, 1.03 g/cm³ density, 2.5 ns response time, 1.043 RSP.
 - Cameras: 3x FLIR ORYX-10G-51S5M working distance 42.5 cm, 333 FPS.
 - ThorLabs optical breadboard enclosure.

Image Processing

- Measure scintillator depth-light distribution.
- Need to correct optical artefacts in image²:
 - 1. Background subtraction
 - 2. Stray radiation removal
 - 3. Lens vignetting correction
 - 4. Lens distortion correction
 - 5. Refraction and Perspective Correction
- Perform physics-based so-called "back projection" to map beam onto incident scintillator surface of camera³.

Uncorrected

Experimental Setup – MIT

- Experiment at Marburger Ionenstrahl-Therapiezentrum using Siemens synchrotron at 180 MeV and 9.3 mm FWHM.
- Investigate effect of beam scanning pattern on interplay artefacts in radiographs of objects in motion.
- Cameras synchronised to beam spots.
- Simplified lung geometry: PMMA sphere on motorised platform (4 s period) between two PMMA slabs.

Results – MIT

- Investigate 3 scanning patterns: horizontal, vertical and spiral.
- After each frame, direction of scanning is reversed.
- Horizontal scan skews object diagonally in direction of motion.
- Vertical scan shrinks or elongates object depending on motion.
- Spiral scan significantly distorts image.
- Best image comes from fastest field delivery!

Experimental Setup – UCLH

- Experiment at UCLH to determine lung motion tracking accuracy.
 - CIRS anthropomorphic thorax phantom, with motorised insert (sinusoidal motion).
 - Can investigate several parameters:
 - Insert size (diameter)
 - Amplitude of motion
 - Speed of motion
 - Varian ProBeam system operated at 230 MeV with 5 mm spot spacing.
 - System presents challenges:
 - No beam trigger signal externally accessible.
 - Therefore, use photodiode to trigger camera image capture.
 - Continuously scanned beam however *does not switch off* between spots!
 - Workaround by forcing beam to skip spot positions and resample skipped spots.
 - Takes longer to deliver field but slowed down insert motion to compensate.

Results – UCLH

- Deliver fields to encompass full object range of motion + 1 cm margin.
- Determine centroid of object in each frame.
- Better accuracy with larger, slower objects undergoing smaller range of motion.
- Accuracy generally between 1-3 mm.

	Insert Diameter (mm)	Motion Amplitude (mm)	Motion Period (s)	Field Size (cm ²)	Frame Acquisition Time (s)	Mean Absolute Error (mm)
L	30	20	6	9x5	1.4	3.1 ± 4.5
	30	20	12	9x5	1.4	2.2 ± 2.9
	30	20	24	9x5	1.4	1.0 ± 1.4
	30	15	24	9x5	1.4	0.9 ± 1.3
	30	10	24	9x5	1.4	0.7 ± 0.8
	20	20	24	8x4	1.0	1.8 ± 0.9
	10	20	24	7x3	0.7	1.9 ± 2.3

Insert Diameter

Amplitude - 20 mm

Amplitude - 15 mm

Amplitude

5.0 s

Results – UCLH

- Better accuracy with slower motion: MAE (mm): 6s = 3.1 ± 4.5; 12s = 2.2 ± 2.9; 24s = 1.0 ± 1.4
- Realistic breathing cycle ~6s.
- Interplay effect can be reduced by delivering full-speed fields!
- Normal fields delivered 2.5-3x faster than those used in test.
- With faster acquisition, could get ~1.0 mm accuracy with 6s cycle.

Period - 12 s

Time Period

What have we learned?

- We can perform proton radiography of static objects to sub-mm accuracy *directly with the therapeutic source*.
- We now have promising indications of imaging performance for objects in motion using scanned beams.
- Biggest technical limitation is acquisition speed: faster imaging means fewer artefacts and better accuracy.
- Several practical aspects to consider for clinical implementation:
 - Detector size
 - Mechanical stability
 - Data acquisition framework -> real-time image processing?

Integr8 Detector 2.0 (beta)

- Joined Integr8 in May 2024 to take over detector design and construction.
- Detector was safely and securely stored for handover...
- New cameras: FLIR Blackfly S USB3
 - Tiny and USB-powered with 522 FPS!
- New lenses: 1.7mm focal length
 - Reduces working distance from 42.5cm to 10cm.
- New ThorLabs enclosure design
 - Less than 50% overall size & removed 1 mirror.
- New data acquisition code in C++
 - Simpler and easier image acquisition and storage.

UCL

Next Steps

- Beam tests at UCLH!
 - Verified functionality of new data acquisition software.
 - Currently optimising image acquisition speed and baseline camera properties.
 - Also improving camera alignment methods.
- Track continuously scanned beams at full speed and reevaluate interplay effects.
- Develop real-time image processing framework.

Thanks for Listening!

- Acknowledgements:
 - The Radiation Research Unit at the Cancer Research UK City of London Centre Award C7893/A28990
 - National Institute for Health and Care Research (NIHR) i4i programme (NIHR 205508)
 - European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 101023220.
 - Beamtime @ MIT funded via Philipps University Marburg Grant (MIT-2022-12).
 - UCL fellowship incubator award
 - Yannick Senger @ MIT

We're always watching

MAYO CLINIC

RADNET

CITY OF LONDON 18