

Northern Illinois University

An Algorithm to Calculate WET Distributions of Proton Therapy Patients from DICOM Files

Imaging Workshop, Loma Linda University, August 2018

<u>C. Sarosiek</u>¹, J. Ricci², M. Pankuch³, G. Coutrakon¹ 1 Northern Illinois University, 2 Notre Dame University, 3 Northwestern Medicine Chicago Proton Center

Motivation

- Proton imaging is limited by the energy of proton accelerators currently available in proton therapy clinics
- This study estimates the percent of patients that can be radiographed with a 230 MeV proton beam with 32 cm of water-equivalent range

Coordinate System

Algorithm - Input

- User defines:
 - Source axial distance
 - HU to RSP curve
 - Input directory
- Automatically loop through all directories and subdirectories in input directory

- From each patient CT file in input directory:
 - HU data
 - Patient contour data
 - Spot pattern or aperture data
 - Isocenter
 - Gantry angles
 - Patient couch (kick) angles
- No need to anonymize patient files

Algorithm – Spot data

- Calculate 1 cm spaced grid within extents of spot data (PBS) or aperture (Scanning beam) centered about isocenter in BEV.

Algorithm – Step and Rotate

- 5 steps per pixel
- Step along y axis then rotate to beam path with Euler matrices

$$R_{dx} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(d_x) & -\sin(d_x) \\ 0 & \sin(d_x) & \cos(d_x) \end{bmatrix}$$
$$R_{dz} = \begin{bmatrix} \cos(d_z) & -\sin(d_z) & 0 \\ \sin(d_z) & \cos(d_z) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_g = \begin{bmatrix} \cos(-g) & -\sin(-g) & 0\\ \sin(-g) & \cos(-g) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$R_k = \begin{bmatrix} \cos(k) & 0 & \sin(k) \\ 0 & 1 & 0 \\ -\sin(k) & 0 & \cos(k) \end{bmatrix}$$

Algorithm – HU to WET

$$WET = \sum_{i} (RSP)_{i} \cdot L$$

 $L = 0.2 * \sqrt{(\cos(-g)\cos(k))^2 + (\sin(-g))^2 + (\cos(-g)\sin(k))^2}$

Measurement Errors

• Stepping across pixel boundaries

- HU to RSP curve is not perfect
- Scattering not taken into account
- Tests on a known cube showed all errors to be within 1 mm.

- All patients and treatment plans are from NWMCPC
 - May not be representative of full population
- Nothing in program for collision control

- Cutoff at 30 cm
 - Possibly could image 30.5 cm

Results

Results – Head and Neck

Patients: 229 Fields: 497 Total Rays: 3481 Imageable: 3322 Percent: 95.4%

Collisions

400

100

ò

200 300

Head and Neck Fails

- G = 90, K = 225
- G = 90, K = 260
- G = 90, K = 265
- G = 90, K = 270
- G = 90, K = 275
- G = 90, K = 315
- G = 90, K = 325
- G = 270, K = 70

Results - Pelvic

Results - Pelvic

Results - Pelvic

Total minus Lateral Frequency WET (mm)

WET Distribution of Pelvic Fields

Total Rays: 156 Imageable: 92 Percent: 59.0%

Lateral

0∟

WET (mm)

NWMCPC Patients

- Could be a preference for certain fields over others at NWMCPC
 - May not be the case for other centers
- Call for help!
 - If you would like to collaborate and share treatment plans with us, let me know.

Results - Torso

Patients: 117 Fields: 199 Total Rays: 2705 Imageable: 2659 Percent: 98.2%

Results - Torso

Conclusions and Future Work

- Overall, these results are promising
 - Head & Neck 95%
 - Need to incorporate collision control
 - Pelvis 5%
 - Jumps to >50% without lateral fields
 - Torso 98%
- Future Work
 - Patients from other centers
 - Extend to pCT
 - Accelerator Plans for ProtonVDA detector

Acknowledgements

- Jake Ricci
- Mark Pankuch
- George Coutrakon
- Northwestern Medicine Chicago Proton Center
- Adit Panchal
- John Winans
- Rahul Kalle, Adam Maris, Gabrielle Franco

Additional Slides - Algorithm -Contours

• Stops after 20 consecutive steps outside of the patient contours

Additional Slides – Rays v Patients

Lung Case: 230 total Rays, 94.7 % pass

Additional Slides - Flashovers

