

5th Annual LLU Algorithm Workshop

Radiobiological Modelling in Radiation Therapy (of Prostate Cancer)

Elisabetta Gargioni, Marie Wegner, Nick Kachanov, Thore Dassow, Lars Budäus

Conventional treatment plan evaluation

- 3D dose distribution
- Dose-Volume histograms

Curves typically obtained from experimental (clinical) data \rightarrow mathematical or mechanistic models to describe them

Source: M. Joiner and A. van der Kogel (Eds.), "Basic Clinical Radiobiology", Edward Arnold (2009)

Source: M. Joiner and A. van der Kogel (Eds.), "Basic Clinical Radiobiology", Edward Arnold (2009)

Source: P. Mayles, A. Nahum, J.-C. Rosenwald (Eds.), Handbook of Radiotherapy Physics, Taylor & Francis (2007)

Source: P. Mayles, A. Nahum, J.-C. Rosenwald (Eds.), Handbook of Radiotherapy Physics, Taylor & Francis (2007)

- dose escalation to the tumor
 - based on MRI or PET imaging → better identification of high-proliferation or hypoxic regions
- hypofractionation
- stereotactic body radiation therapy

Common issues:

- image guidance for margin reduction & motion management
- toxicity reduction / isotoxicity

Curves typically obtained from experimental (clinical) data \rightarrow mathematical or mechanistic models to describe them

Several levels:

- Use of dose-response curves for determining the probability of tumor control or toxicity rate for a given treatment plan and fractionation scheme
- Use of dose-response curves for optimizing fractionation scheme and prescription dose on an individual basis
- Use of radiobiological models for optimizing the (biological) dose distribution on an individual basis

Typically based on the linear-quadratic model of cell survival & Poisson statistics

$$TCP = \exp\left[-N_0 \exp(-\alpha D - \beta dD)\right]$$

Or, more sophisticated, considering population-based data \rightarrow variation of α

$$TCP = \frac{1}{\sigma_{\alpha}\sqrt{2\pi}} \int_{0}^{\infty} \exp\left\{-\rho V \exp\left[-\alpha D(1 + d/(\alpha/\beta))\right]\right\} \exp\left[-\frac{(\alpha - \overline{\alpha})^{2}}{2\sigma_{\alpha}^{2}}\right] d\alpha$$

"Marsden-LQ Model": see J Uzan & A E Nahum, Br. J. Radiol (2012) 85: 1279-1286

"Calculating" the NTCP

Lyman-Kutcher-Burman (LKB) model:

$$NTCP = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{(\mu - \mu_{50})/m\mu_{50}} \exp(-u^2/2) du$$

$$\mu = D_{eff} = \left(\sum_{i} v_i D^{1/n}\right)^n$$

Relative Seriality (RS) model:

$$NTCP = \left(1 - \prod_{i=1}^{N} \left[1 - P(D_i)^s\right]^{v_i}\right)^{1/s}$$

 $P(D_i) = 2^{-e^{e\gamma_s \left(1 - \frac{D_i}{D_{50}}\right)}}$

Source: Defraene et al. (2012)

UK Determining the therapeutic window for prostate cancer

Physical values

Prostate cancer \rightarrow small $\alpha/\beta!$

Organ	Endpoint	α/β (Gy)
Prostate	Tumor control	1,5-2,0
Rectum	Bleeding	3
Bladder	Late toxicity grade 3-4	6

Quelle: M. Joiner and A. van der Kogel (2009)

$$BED \equiv \frac{E}{\alpha} = nd \left(1 + \frac{d}{\frac{\alpha}{\beta}} \right)$$

Quelle: J. Fowler (1989)

example:

 $D_1 = 75$ Gy with $d_1 = 1.8$ Gy for the tumor

 α/β = 10 Gy

```
iso-effective dose for d_2 = 6 Gy?
```

 $D_2 = (1.8 + 10)*75/(6+10) = 55.3 \text{ Gy}$

example:

$BED_{1} = BED_{2}$ $\downarrow \qquad D_{1} = 75 \text{ Gy with}$ $\frac{D_{1}}{D_{2}} = \frac{d_{2} + \frac{\alpha}{\beta}}{d_{1} + \frac{\alpha}{\beta}}$ $B = -\frac{128 \pm 158}{2}$

D₁ = 75 Gy with d₁ = 1.8 Gy for Tumor α/β = 1.5 Gy Iso-effective dose for d₂ = 6 Gy? D₂ = (1.8 +1.5)*75/(6+1,5)= 33 Gy

Iso-effect: same TCP

Iso-effectiveness for toxicity

$$BED_{1} = BED_{2}$$

$$\downarrow$$

$$\frac{D_{1}}{D_{2}} = \frac{d_{2} + \alpha / \beta}{d_{1} + \alpha / \beta}$$

example:

 $D_1 = 75 \text{ Gy with } d_1 = 1.8 \text{ Gy}$

 α/β = 3 Gy

iso-effective dose (e.g. late rectal bleeding) for $d_2 = 6$ Gy?

 $D_2 = (1.8 + 3)*75/(6+3)=40 \text{ Gy}$

Iso-effect: same NTCP

example:	
D ₁ = 75 Gy with d ₁ = 1.8 Gy	
α/β = 6 Gy	
Iso-effective dose (e.g. late bladder toxicity) d ₂ = 6 Gy?	
D ₂ = (1.8 +6)*75/(6+6)= 48.8 Gy	

Evaluating alternative fractionation schemes in prostate cancer radiotherapy

Are these models robust for predicting complications and tumor control rate?

Model parameters available from literature have quite large uncertainties

- What is the effect of such uncertainties on model predictions ?
 - Variation of the model parameter values within ± 20% of the reported values

Results for prostate cancer, Marsden-LQ model

$$TCP = \frac{1}{\sigma_{\alpha}\sqrt{2\pi}} \int_{0}^{\infty} \exp\left\{-\rho V \exp\left[-\alpha D(1 + d/(\alpha/\beta))\right]\right\} \exp\left[-\frac{(\alpha - \overline{\alpha})^{2}}{2\sigma_{\alpha}^{2}}\right] d\alpha$$

Starting values (BioSuite)*: $\alpha/\beta = 1.5 \text{ Gy}, \ \alpha = 0.155 \text{ Gy}^{-1},$ $\rho = 10^7 \text{ cm}^{-3}$

* J Uzan & A E Nahum, Br. J. Radiol (2012) 85: 1279-1286

$$NTCP = \left(1 - \prod_{i=1}^{N} \left[1 - P(D_i)^s\right]^{v_i}\right)^{1/s} \quad P(D_i) = 2^{-e^{e\gamma_s \left(1 - \frac{D_i}{D_{50}}\right)}}$$

Endpoint: rectal bleeding grade ≥ 2

Starting values*: T = 1.42, s = 0.5, $D_{50} = 83.6$ Gy,, $\alpha/\beta = 3$ Gy

* T Rancati et al. (2004). Radiother. Oncology 73: 21-32.

J. Einhausen et al., Strahlentherapie und Onkologie Vol. 190 (2014)

Models seem to be robust with respect to the most crucial parameters, still important to know whether the uncertainties could affect their clinical use

- What is the effect of such uncertainties on NTCP-based plan optimization?
- Use of LKB model for NTCP
- Variation of the model parameter values within
 - ± 20% of the reported values, except μ_{50}
 - $\,$ \pm 6% for μ_{50}
- **Dosimetric constraint**: 72 Gy to PTV, in 40 fractions
- Endpoints for NTCP: late rectal bleeding grade ≥ 2 , late bladder toxicity grade ≥ 3

UK Are these models robust for plan optimization?

HAMBURG

E. Gargioni et al., Radiotherapy and Oncology 115:S459 (2015)

What about personalized dose escalation?

multi-parametric MR-images Dose escalation to MR-lesion

BUT:

- ... if the lesion is not detectable with MRI?
- ... if MRI is not accurate enough?
- ... how to consider tumor biology?

Our idea:

Improve contouring by adding information through fusion-guided biopsy

Advantages:

- higher detection of significant cancer
 (Gleason Score > 6)
- lower detection of non significant cancer
- higher proportion of positive biopsy cores

Guidelines of the EAU* for patients receiving biopsy for the first time

Recommendations in biopsy naïve patients

Perform mpMRI before prostate biopsy.

When mpMRI is positive (i.e. PI-RADS \geq 3), combine targeted and systematic biopsy.

When mpMRI is negative (i.e. PI-RADS \leq 2), and clinical suspicion of prostate cancer is low, omit biopsy based on shared decision making with the patient.

Use of fusion-biopsy data for dose escalation

UKE

HAMBURG

Automatic prostate segmentation based on this zone model?

UK "Automatic" prostate segmentation

Elastic registration of the segmented prostate with individualized mpMR-images

→ co-localization between mpMRimages and biopsy data for 10 patients

brown: original prostate contour

Example: MRI lesions and biopsy data

Patient #3

Cyan: biopsy-confirmed lesions (anatomical zone)

Red: mpMRI lesion

Example: MRI lesions and biopsy data

Patient #4

Cyan: biopsy-confirmed lesions (anatomical zone)

Red: mpMRI lesion

Example: MRI lesions and biopsy data

Patient #7

Cyan and pink: biopsy-confirmed lesions (anatomical zone)

Red: mpMRI lesion

Patient #7

Red: PTV whole prostate

Blue: PTV "lesion(s)"

Dotted: α/β = 4.5 Gy

P. Mehta et al., Radiotherapy and Oncology 119:S808-S809 (2016)

MRI-contoured tumor (GTV)
Biological optimization → maximizing TCP for lesion(s)
& minimizing NTCP as before

Dose constraint for whole prostate: 74 Gy in 40 fractions

How to better consider tumor biology into TCP model?

- Gleason score: related to radiosensitivity (α)?

How accurate the segmentation?

GTV-to-PTV margins & movement?