

### **An Overview of FRED: A GPU-based Monte Carlo Tool for Proton Therapy**

**A Rucinski<sup>1\*</sup>**, J Baran<sup>11</sup>, G Battistoni<sup>2</sup>, M Durante<sup>3</sup>, J Gajewski<sup>1</sup>, M Garbacz<sup>1</sup>, C Granja<sup>\*</sup>, R Kopec<sup>1</sup>, N Krah<sup>4</sup>, G Mierzwinska<sup>1</sup>, N Mojzeszek<sup>1</sup>, C Oancea<sup>\*</sup>, V Patera<sup>5</sup>, M Pawlik-Niedzwiecka<sup>1</sup>, E Pluta<sup>6</sup>, I Rinaldi<sup>7</sup>, E Scifoni<sup>8</sup>, A Skrzypek<sup>1</sup>, F Tommasino<sup>8</sup>, A Schiavi<sup>5</sup>

(1) Institute of Nuclear Physics PAN, Krakow, Poland

(2) INFN, Milan, Italy

- (3) GSI Helmholtzzentrum für Schwerionenforschung, Technische Universität Darmstadt, Germany
- (4) University Lyon, CNRS, CREATIS UMR 5220, Centre Lyon Berard, Lyon, France







- (5) Sapienza University of Rome, Rome, Italy
- (6) M. Sklodowska-Curie Institute OC, Krakow, Poland
- (7) ZonPCT/Maastro clinic, Maastricht, Netherlands
- (8) TIFPA, Trento, Italy
- (\*) Advacam, Prague, Czech Republic



#### European Union

European Regional Development Fund



Imaging the Unseen



### Outline:

- FRED Monte Carlo code
- Automated implementation of the beam model phase space
- FRED validation
- FRED applications
- Current developments
- Conclusions



2

# Krakow proton beam therapy centre, Poland



- IBA Proteus C-235
- Clinical operation from Oct 2016 Eclipse TPS v.13.6
- 2x Gantry (~200 H&N patients treated)
- Eye treatment room
- Experimental hall



# Krakow proton beam therapy centre, Poland



- IBA Proteus C-235
- Clinical operation from Oct 2016 Eclipse TPS v.13.6
- 2x Gantry (~200 H&N patients treated)
- Eye treatment room
- Experimental hall

### FRED, GPU-accelerated Monte Carlo code [Schiavi et al. 2017, PMB]



- In-house developed at Sapienza University of Rome
- Condensed history for continuous processes (dE/dx, MCS, energy loss fluctuations)
- Single steps for nuclear events
- Acceleration x1000 (tracking rate 10^6 p+/s):
  - x10 physics processes mainly contributing to the proton dose deposition
  - x100 parallelisation on GPU.



4

### FRED, GPU-accelerated Monte Carlo code



Antoni Rucinski INSTITUTE OF NUCLEAR PHYSICS PAN antoni.rucinski@ifj.edu.pl antoni.rucinski@gmail.com web: www.ifj.edu.pl/dept/no6/nz62/ar/







### Proton therapy treatment

# Automated implementation of the beam model phase space library in FRED

Antoni Rucinski INSTITUTE OF NUCLEAR PHYSICS PAN antoni.rucinski@ifj.edu.pl antoni.rucinski@gmail.com web: www.ifj.edu.pl/dept/no6/nz62/ar/



### Input:

Facility commissioning measurements (in 10 MeV steps)



#### Phase space library characterisation:

Step 1: Fitting emittance parameters  $(\varepsilon_x, \alpha_x, \beta_x, \varepsilon_y, \alpha_y, \beta_y)$ 

Step 2: Optimization of the beam energy (E) and energy spread (E<sub>σ</sub>)

GPU

Step 3: Estimation of the the dosimetric calibration factor (SF<sub>MU</sub>)



## Beam model phase space library in FRED



### p+@150 MeV

Antoni Rucinski



antoni.rucinski@ifj.edu.pl\_antoni.rucinski@gmail.com\_web: www.ifj.edu.pl/dept/no6/nz62/ar/

**INSTITUTE OF NUCLEAR PHYSICS PAN** 







## Beam model phase space library in FRED

### **Range Shifter**



### p+@150 MeV



Antoni Rucinski INSTITUTE OF NUCLEAR PHYSICS PAN antoni.rucinski@ifj.edu.pl\_antoni.rucinski@gmail.com\_web: www.ifj.edu.pl/dept/no6/nz62/ar/









## Beam model phase space library in FRED



### p+@100, 150, 200 MeV



**INSTITUTE OF NUCLEAR PHYSICS PAN** Antoni Rucinski antoni.rucinski@ifj.edu.pl antoni.rucinski@gmail.com web: www.ifj.edu.pl/dept/no6/nz62/ar/





13

### What about the secondary sigma?



#### p+@150 MeV

Antoni Rucinski INSTITUTE OF NUCLEAR PHYSICS PAN antoni.rucinski@ifj.edu.pl antoni.rucinski@gmail.com web: www.ifj.edu.pl/dept/no6/nz62/ar/





### What about the secondary sigma?

### MiniPix TimePix from Advacam



Sensor Thickness: 300 µm for Si Sensitive Area: 14 mm x 14 mm Number of Pixels: 256 x 256 Pixel Pitch: 55 µm Readout Speed: 45 frames/s



### Water phantom + Submarine





### Proton beam characterisation in water



Antoni Rucinski INSTITUTE OF NUCLEAR PHYSICS PAN antoni.rucinski@ifj.edu.pl antoni.rucinski@gmail.com web: www.ifj.edu.pl/dept/no6/nz62/ar/



### Proton beam characterisation in water p+, 1nA, clinical mode, 150 MeV

### no Range shifter



Antoni Rucinski INSTITUTE OF NUCLEAR PHYSICS PAN antoni.rucinski@ifj.edu.pl antoni.rucinski@gmail.com web: www.ifj.edu.pl/dept/no6/nz62/ar/

### Range shifter



17

### Proton beam characterisation in water p+, 1nA, clinical mode, 150 MeV

### no Range shifter



Antoni Rucinski INSTITUTE OF NUCLEAR PHYSICS PAN antoni.rucinski@ifj.edu.pl antoni.rucinski@gmail.com web: www.ifj.edu.pl/dept/no6/nz62/ar/

### Range shifter





#### **Pixel detectors Timepix**

Events display: Mixed Field





#### **Cluster parameters:**

- Height [keV], H
- Area [px], A
- Energy [keV/px], E

#### Pixel cluster analysis











#### Cristina Oanceal 5<sup>th</sup> Annual LLU Workshop July 2019 | Loma Linda USA

25.07.2019



### **Spatial distribution of Event counts**





| いいいというないないないのであるとないである | 50<br>10<br>5 | ) |
|------------------------|---------------|---|
| ŝ                      | <b>1</b>      |   |
| ŝ                      |               |   |
| a                      |               |   |
|                        | #/px]         |   |
| ù,                     | <u> </u>      |   |
| 2                      | e             |   |
| 2                      | -ă            |   |
|                        | 1             |   |
|                        | e             |   |
| 2                      | 10            |   |
| 0                      | Ĩ             |   |
| 2                      | e             |   |
|                        | 2             |   |











Far from the proton beam spot Minipix Timepix 300µm Si sensor

75 100 Z [mm]

#### protons

#### 2D visualization of Cluster Energy

Cristina Oanceal 5<sup>th</sup> Annual LLU Workshop July 2019 | Loma Linda USA

25.07.2019









5.5









#### Input:

Treatment plans patients & QA

Validation

Measurements patients & QA



dation



#### Input:

Treatment plans patients & QA

Measurements patients & QA

**Conversion and calculation** of treatment plans:

Import of the treatment plan accounting for phase space parametrization. Interpolation.

Calculation of Monte Carlo simulations **GPU** 





lation



#### Input:

Measurements

### Phase space validation in water



FRED vs Measurements: **<2%** TPS vs Measurements: **<4%** 

Antoni Rucinski INSTITUTE OF NUCLEAR PHYSICS PAN antoni.rucinski@ifj.edu.pl antoni.rucinski@gmail.com web: www.ifj.edu.pl/dept/no6/nz62/ar/



# 182 simulated and measured layers of verification plans in water



<GI pass rate> (2mm/2% criteria) = 96.3(3.3)%

2D plane through the isocenter



### **CT** calibration







#### Mono-energetic p+ field: 150 MeV, 10x10cm<sup>2</sup>







Mono-energetic p+ field: 150 MeV, 10x10cm<sup>2</sup>





#### Measurement

### MatriXX





Mono-energetic p+ field: 150 MeV, 10x10cm<sup>2</sup>



### Measurement

### **MatriXX**





-1.6

-1.4

-0.8 ତ୍ରି



MatriXX half-head phantom scanning nozzle mono field 10x10 cm DigiPhant

Mono-energetic p+ field: 150 MeV, 10x10cm<sup>2</sup>



Gamma Index tools: <u>https://pymedphys.com</u>

### **TPS** calculation

### ECLIPSE v13.6



- 1.6

-1.4

1.2

<sup>-1.0</sup> c

- 0.8 🦕

0.6

-0.2



### Measurement

### **MatriXX**





1.4

-0.8 <u>ල</u>



MatriXX half-head phantom scanning nozzle mono field 10x10 cm DigiPhant

Mono-energetic p+ field: 150 MeV, 10x10cm<sup>2</sup>



Gamma Index tools: https://pymedphys.com

### **TPS calculation**

### **FRED** calculation

FRED





-1.6

-1.4

1.2

-0.8 କ୍ର୍

0.2

0.5



### MatriXX vs FRED



#### 10<sup>5</sup> p<sup>+</sup>/spot , total sim. time 2'







#### Phase space validation in heterogenous phantom **TPS calculation FRED** calculation Measurement

### **MatriXX**



Range shifter



1.6





MatriXX half-head phantom mono field  $10x10 \text{ cm}^2$ range DigiPhant shifter Mono-energetic p+ field: 150 MeV, 10x10cm<sup>2</sup>



**INSTITUTE OF NUCLEAR PHYSICS PAN** Antoni Rucinski antoni.rucinski@ifj.edu.pl antoni.rucinski@gmail.com web: www.ifj.edu.pl/dept/no6/nz62/ar/

scanning

nozzle

### ECLIPSE v13.6

-1.4

1.2

1.0

- 0.8 जि

0.5

# **FRED**

-325



### MatriXX vs FRED



Gamma Index tools: https://pymedphys.com









Antoni Rucinski INSTITUTE OF NUCLEAR PHYSICS PAN antoni.rucinski@ifj.edu.pl antoni.rucinski@gmail.com web: www.ifj.edu.pl/dept/no6/nz62/ar/





### LET validation: FRED vs TOPAS



### FRED for independent dose calculation and treatment planing studies

#### **Radiobiological dose TPS RBE=1.1**

Eclipse v.13.6 110.0 02.5 % 00.0 %

#### **Radiobiological dose** FRED RBE=1.1







# FRED for independent dose calculation and treatment planing studies

#### Radiobiological dose TPS RBE=1.1



Radiobiological dose FRED variable RBE



Antoni Rucinski INSTITUTE OF NUCLEAR PHYSICS PAN antoni.rucinski@ifj.edu.pl antoni.rucinski@gmail.com web: www.ifj.edu.pl/dept/no6/nz62/ar/



**TPS**<sub>RBE=1.1</sub> **vs FRED**<sub>RBE</sub>(Carabe)





### LET and RBE distributions for variable RBE dose calculations LET distribution **RBE** distribution











### FRED for independent dose calculation and treatment planing studies

#### **Radiobiological dose TPS RBE=1.1**







# **Treatment planing studies**

**10 Head&Neck patients treated in Krakow** • PTV  $D_{mean}$  up to ~8% higher that prescribed dose

| PTV        | RBE=1.1          | Carabe RBE       |
|------------|------------------|------------------|
| Dmean      | 100.1%<br>(0.0%) | 107.9%<br>(0.8%) |
|            | DDE_1 1          | Corobo DDE       |
| Brain stem | [Gy(RBE)]        | [Gy(RBE)]        |

OAR (brain stem)  $D_{02}$  up to ~5 Gy(RBE) higher than calculated in TPS



# **Treatment planing studies**

10 Head&Neck patients treated in Krakow • PT

| PTV        | <b>RBE=1.1</b>       | Carabe RBE              | • OA<br>hig |
|------------|----------------------|-------------------------|-------------|
| Dmean      | 100.1%<br>(0.0%)     | 107.9%<br>(0.8%)        | • Th        |
|            |                      |                         |             |
| Brain stem | RBE=1.1<br>[Gy(RBE)] | Carabe RBE<br>[Gy(RBE)] | as          |

Antoni Rucinski INSTITUTE OF NUCLEAR PHYSICS PAN antoni.rucinski@ifj.edu.pl antoni.rucinski@gmail.com web: www.ifj.edu.pl/dept/no6/nz62/ar/

- PTV D<sub>mean</sub> up to ~8% higher that prescribed dose
  - AR (brain stem)  $D_{02}$  up to ~5 Gy(RBE) gher than calculated in TPS
  - ne mean time to recalculate single treatment plan was 3.7 min
    - 10^5 p/beam
    - 1.2×10^9 p/plan
    - 5.6×10^6 p/s
    - voxel size: 0.7 mm x 0.7 mm x 1.2 mm.



45



CT calibration  $(HU \rightarrow RPSP)$ 



### FRED: New developments and future applications

- Interfacing FRED with Eclipse TPS
- We are currently testing FRED for beam models of IBA, Varian, and Mevion facilities
- Scoring in multiple regions to enable application of range shifter, dynamic aperture or detector development for range monitoring
- models for light and heavy ions.

• FRED kernel developments: implementation of photon interactions and nuclear



47

### FRED Interface with Slicer3D



Antoni Rucinski antoni.rucinski@ifj.edu.pl INSTITUTE OF NUCLEAR PHYSICS PAN antoni.rucinski@gmail.com web: www.ifj.edu.pl/dept/no6/nz62/ar/



### FRED: New developments and future applications

- Potential clinical applications of GPU-accelerated MC code FRED are:
  - independent QA treatment plan recalculation,
  - fast, in-room dose re-calculation based on daily CT images
  - multi-parameter plan optimization (robust, radiobiological, arc optimization).



49

### Conclusions

- models implemented in FRED.
- with protons.

• These results confirm excellent performance of the physics

• FRED dosimetric accuracy enables its application in clinical routine and potential improvement of patient treatment



### Thank you



Paweł Moskal Monika Pawlik-Niedźwiecka & the J-PET collaboration





### Angelo Schiavi, Giuseppe Battistoni, Vincenzo Patera





