

Intra-treatment PET imaging in Proton Therapy with the J-PET System: System Overview and First Experimental Results

A. Rucinski¹, J. Baran¹, J. Gajewski¹, C Granja^{*}, G. Korcyl², C Oancea^{*}, M. Pawlik-Niedźwiecka^{1,2}, Sz. Pawlik-Niedźwiecki², P. Moskal²

On behalf of the J-PET collaboration

¹Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland ²Institute of Physics, Jagiellonian University, Krakow, Poland (*) Advacam, Prague, Czech Republic

Republic

of Poland

European Union

European Regional Development Fund

<u>Principle</u>

CRT = 0.266 ns.

 $t_{hit}=(t^{L}+t^{R})/2$ $\Delta LOR=(t_{hit}^{up}-t_{hit}^{dw})c/2$

Cost effective method for the Total-body PET

Principle

CRT = 0.266 ns.

```
t_{hit}=(t^{L}+t^{R})/2

\Delta LOR=(t_{hit}^{up}-t_{hit}^{dw})c/2
```

Prototype

- Three cylindrical layers of EJ-230 plastic scintillator strips (7×19×500mm3)
- Vacuum tube photomultipliers

Cost effective method for the Total-body PET

Principle

CRT = 0.266 ns.

 $t_{hit}=(t^L+t^R)/2$ ΔLOR=(t_{hit}^{up}-t_{hit}^{dw})c/2

Prototype

- Three cylindrical layers of EJ-230 plastic scintillator strips (7×19×500mm3)
- Vacuum tube photomultipliers

light weight, portable, reconfigurable

Plastic scintillator Silicon photomultiplier

Integrated on-board front-end electronics

Cost effective method for the Total-body PET

Principle

CRT = 0.266 ns.

 $t_{hit}=(t^{L}+t^{R})/2$ $\Delta LOR=(t_{hit}^{up}-t_{hit}^{dw})c/2$

Prototype

- Three cylindrical layers of EJ-230 plastic scintillator strips (7×19×500mm3)
- Vacuum tube photomultipliers

Modular Prototype

light weight, portable, reconfigurable

Cost effective method for the Total-body PET

Positronium imaging:

In PET, in 30-40% cases e+e- annihilations proceed via production of positronium atom

Quantum entanglement imaging:

- Determination of the linear polarisation direction of photon at the moment of its interaction with the detector and the quantum entanglement properties of photons.
- Correlation between the degree (type) of quantum entanglement and tissue properties.

J-PET: Moskal P et al., arXiv:1805.11696, submitted to Phys. Med. Biol. (2018).
 J-PET: Moskal P et al., Patent No: US 9851456 (2017); PL 227658 (2013); PCT/EP2014/068374.
 Hiesmayr B and Moskal P, arXiv:1807.04934, submitted to Scientific Reports (2018).
 J-PET: Moskal P et al., (2015) Nucl. Instr. Meth. A775, 54.
 J-PET: A. Gajos et al. (2016) Nucl. Instr. Meth. A819, 54.
 J-PET: Moskal P et al., (2016) Phys. Med. Biol. 61, 2025.
 J-PET: Moskal P et al., (2016) Acta Phys. Polon. B47, 509.
 J-PET: D. Kamińska et al., (2016) Eur. Phys. J. C76 (2016) 455.

Proton therapy treatment

Design by Monte Carlo simulations

Proton beam

- The modular J-PET gives large freedom of choice of geometrical arrangement
- The number of layers should improve the efficiency
- Barrel could be integrated away from the gantry using e.g. rail-system
- Dual head can be integrated in the treatment position (studied in GSI and CNAO)

Signal

CASTOR for the J-PET image reconstruction

Reconstruction software requirements for the J-PET

- long axial FOV (2m)
- multi-layer, non-cylindrical geometry
- inclusion of TOF
- continuous position determination along the axial direction

CASTOR for the J-PET image reconstruction

First reconstruction of cylindrical water phantom

Simulations of system matrix

Corrections: sensitivity, attenuation, scatter, random

First Experiment

Aim: Characterize secondary radiation counting rate in J-PET detector during the proton therapy irradiation.

First Experiment

Aim: Characterize secondary radiation counting rate in J-PET detector during the proton therapy irradiation.

J-PET settings

Digitizer and scope measurements are had to be started separately.

Slide from Szymon and Greg

Secondary radiation signal in J-PET

Slide from Szymon and Greg

Summary

- J-PET is a plastic scintillator based PET detector developed at Jagiellonian University
- New applications include:
 - positronium imaging
 - quantum entanglement imaging
 - proton therapy applications

Thank you

J. Baran, K. Czerska, J. Gajewski, M. Garbacz,

L. Grzanka, R. Kopec, A. Krempa, K. Krzempek,

G. Mierzwińska, N. Mojżeszek, E. Pluta, M. Rydygier

