

Carla Winterhalter :: Paul Scherrer Institut & ETH Zurich Current: University of Manchester, OPTIMA Consortium

Protons Do Play Dice:

Validating, Implementing And Applying Monte Carlo Techniques For Proton Therapy (ETH Diss 25698)

5th Annual Loma Linda Workshop, 22/07/2019 – 24/07/2019

Proton pencil beam scanning

- Passive scattering:
 - Broad beam
 - Lateral conformation: collimator

- Pencil beam scanning:
 - Small proton beams are directed into the patient
 - Depth is adjusted by energy change and pre-absorber usage

Monte Carlo Technique

Simulate protons passing through material:

- Physics models
- Probabilites for interactions
- Random numbers are sampled

Proton = cyan Electron = red Gamma = green Neutron = yellow

Monte Carlo Technique

Simulate protons passing through material:

- Physics models
- Probabilites for interactions
- Random numbers are sampled

Geant4/TOPAS: (Perl et al 2012)

- Well validated (Testa et al. (2013), Grassberger et al. (2014), Fracchiolla et al. (2015))
- Institute/user specific setup
 - Beam model
 - Pre-absorber model
 - Patient
 - -Geometry

Protons Do Play Dice: Validating, Implementing And Applying Monte Carlo Techniques For Proton Therapy.

Protons Do Play Dice:

Validating...

- 1. How accurate is the setup process?
- 2. How accurate is the absolute dose prediction?

Implementing...

- 3. How accurate are analytical dose calculations?
- 4. What is the combined error of calculation and delivery?

Applying...

- 5. How does collimation improve the lateral fall-off in water?
- 6. How does collimation improve the dose in the patient?

...Monte Carlo Techniques For Proton Therapy.

Validating Monte Carlo Techniques for Proton Therapy

- 1) How accurate is the setup process?
- 2) How accurate is the absolute dose prediction?

1) How accurate is the setup process?

Dose [%]

Dose difference[%]

Difference PSI - Christie

1) How accurate is the setup process?

- Critical parameters:
- 1) Ionization potential of the water used during the Monte Carlo setup
- 2) Modelling of objects
- Updated setup process
- After adjustments: differences within ±2.5%

Monte Carlo simulations

Measurements

Figure courtesy: Anna Fredh

Monte Carlo simulations

Proton Numbers based on *Faraday cup* measurements.

Absolute doses simulated with *Monte Carlo*.

<u>Measurements</u>

Absolute doses measured with *ionization chambers*.

https://www.pt w.de/advanced markus electro n chambe.html,

Compare to energy layer measurements:

- Absolute dose offset: 2% Monte Carlo is systematically lower than measurements.
- No dependence on preabsorber.

Compare to delivered clinical fields:

- 1% (mean value) absolute dose offset
- 94% of the fields agree within +-2% of this mean

Monte Carlo simulations

Proton Numbers based on Faraday

cup measurements.

Reproducibility: 0.4% Nozzle extraction: 0.5%

Absolute doses simulated with *Monte Carlo*.

Differences between MC codes<1% (Goma 2015)

Measurements

Absolute doses measured with *ionization chambers*.

Difference between two chambers: 1.4% Accuracy chambers: 2.0%/2.3% (IAEA 2000)

Summary 1: Validating Monte Carlo Techniques for Proton Therapy

1) How accurate is the setup process?

- Critical parameters identified
- Agreement within ±2.5%

Winterhalter et al. (2019a), submitted to Medical Physics

2) How accurate is the absolute dose prediction?

• Absolute dose predictions within ±2% Winterhalter et al. (2018a), Phys Med Biol 63.17

Implementing Monte Carlo Techniques for Proton Therapy

3) How accurate are analytical dose calculations?

3) How accurate are analytical dose calculations?

Schaffner et al. (1999), Phys Med Biol 44.1

3) How accurate are analytical dose calculations?

Schaffner et al. (1999), Phys Med Biol 44.1

3) How accurate are analytical dose calculations?

PTV, MC minus RayCasting

Clinical dosimetric indices:

agreement within ±5%

Analytical algorithms predict dose distributions with clinical sufficient accuracy, at least for the dose optimization.

Motivation - Patient Specific QA:

1) Verify the TPS dose calculation

2) Verify the plan data transformation3) Verify that plan can be delivered

Measure each field

in a water phantom.

(Lomax et al, 2004, Med Phys, 31 Trnkova et al 2016, Med Phys, 43)

Monte Carlo from log-files:

- ... checks dose calculation accuracy
- ... checks data transformation & dose delivery

and could be used to reduce/replace patient specific quality assurance measurements.

Summary 2: Implementing Monte Carlo Techniques for Proton Therapy

3) How accurate are analytical dose calculations?

- Clinical dosimetric indices: agreement within ±5%
- No substantial dependence on the algorithm *Winterhalter et al. (2019b), Phys. Med. Biol.64 065021*

4) What is the combined error of calculation and delivery?

• Monte Carlo from log-files could be used to replace patient specific quality assurance measurements. *Winterhalter et al. (2019c), Phys. Med. Biol.64 035014*

Applying Monte Carlo Techniques for Proton Therapy5) How does collimation improve the lateral fall-off in water?

6) How does collimation improve the dose in the patient?

- Passive scattering:
 - Broad beam
 - Lateral conformation: collimator

- Pencil beam scanning:
 - Small proton beams are directed into the patient

- Shallow targets: Lateral fall-off (penumbra) of a collimated broad divergent beam is superior to the one of a scanned pencil beam (Safai et al., Physics in Medicine and Biology 53.6 (2008):1729)
- Sharp distal falloff is rarely employed to spare critical organs

Which are the best strategies to minimize the lateral fall-off for PBS?

Collimation: Uniformly weighted pencil beams are collimated (*Passive scattering*)

E = 230 MeV

Edge-enhancement: The weights of the uncollimated pencil beams are optimized (Pencil beam scanning)

E = 70 MeV

E = 230 MeV

Edge-enhanced collimation: The weights of the collimated pencil beams are optimized

E = 70 MeV

Dose distribution Dose distribution 1.2 1.2 Weighted spots Weighted spots 1 1 Relative dose Relative dose 0.0 8 0.0 8 0.4 0.4 0.2 0.2 0 0 -4 0 4 -4 0 4 Profile [cm] Profile [cm]

Winterhalter et al. (2018b), Phys Med Biol 63.2 Winterhalter et al. (2018c), Phys Med Biol 63.20

5) How does collimation improve the lateral fall-off in water?

Proton beam

Collimation: Uniformly weighted pencil beams are collimated (*Passive scattering*)

Edge-enhancement: The weights of the uncollimated pencil beams are optimized (Pencil beam scanning)

Edge-enhanced collimation: The weights of the collimated pencil beams are optimized

Water tank

5) How does collimation improve the lateral fall-off in water?

Winterhalter et al. (2018b), Phys Med Biol 63.2; Winterhalter et al. (2018c), Phys Med Biol 63.20

1	\square	\frown	l i

5) How does collimation improve the lateral fall-off in water?

Winterhalter et al. (2018b), Phys Med Biol 63.2; Winterhalter et al. (2018c), Phys Med Biol 63.20

6) How does collimation improve the dose in the patient?

Normal tissue (V30%) dose reduction: 20%

Mean dose to brainstem reduction: 7%

Optimized, energy layer specific collimation

6) How does collimation improve the dose in the patient?

Normal tissue (V30%) dose reduction: 25%

Mean dose to brainstem reduction: 13%

Optimized energy layer specific collimation AND **spots following the target contour** (*Meier et al 2017, Phys Med Biol, 62(6)*)

Summary 3: Applying Monte Carlo Techniques for Proton Therapy

5) How does collimation improve the lateral fall-off water?

• Penumbra improvement for ranges up to 15cm Winterhalter et al. (2018b), Phys Med Biol 63.2 Winterhalter et al. (2018c), Phys Med Biol 63.20

6) How does collimation improve the dose in the patient?

 Reduced dose to normal tissue, acceptable target coverage

Winterhalter et al. (2018d), Phys. Med. Biol. 64 015002

Validating, implementing and **applying** Monte Carlo Techniques for Proton Therapy

What is next?

- Clinical commissioning
 - -Measurements in geometric phantoms
 - -Measurements in anthropomorphic phantoms

- Reduce/replace patient specific quality assurance measurements

 Increase patient throughput
 - –Verifications directly in the patient CT

- Experimental validation
- Improvements in the analytical & Monte Carlo model
- Collimator design
 - Choice of material
 - Light design
 - Fast adjustment of leafs

Wir schaffen Wissen – heute für morgen

My thanks go to...

- Tony Lomax & Sairos Safai
- PSI/CPT: Alessandra Bolsi, Manuel Dieterle, Martina Egloff, Anna Fredh, Erik Fura, Francis Gagnon-Moisan, Jan Hrbacek, Ulrike Kliebsch, Gilles Martin, Gabriel Meier, David Oxley, Sojin Shim, Dorota Siewert, Yafu Tian, Damien C. Weber, Stefan Zepter, Ye Zhang, Michael Zorneth; all Master/PhD Students and PostDocs, PSI Cluster Merlin 4 & Merlin 5.
- The Christie NHS Foundation Trust: Adam Aitkenhead, Ranald I. MacKay, Jenny Richardson.
- Clemens Grassberger & TOPAS User Forum
- Varian Medical Systems Particle Therapy, Germany
- Joël Mesot, Håkan Nyström, Gian Michele Graf

Wir schaffen Wissen – heute für morgen

Setup and validation of a Monte Carlo system...

- ... for dose calculation in the patient geometry.
- ... to replace/reduce patient specific quality assurance measurements.

First steps to improve penumbra for proton therapy.

- C. Winterhalter et al 2019a, «Comparison of two Monte Carlo calculation engines for proton pencil beam scanning.», submitted to Medical Physics.
- C. Winterhalter et al 2018a, «Validating a Monte Carlo approach to absolute dose quality assurance for proton pencil beam scanning» Phys Med Biol 63.17 (2018): 175001.
- C. Winterhalter et al 2019b, «Evaluation of the ray-casting analytical algorithm for pencil beam scanning proton therapy.» Phys Med Biol 64 (2019): 065021
- C. Winterhalter et al 2019c, «Log file based Monte Carlo calculations for proton pencil beam scanning therapy.» Phys Med Biol 64 (2019): 035014
- C. Winterhalter et al 2018b, «A study of lateral fall-off (penumbra) optimisation for pencil beam scanning (PBS) proton therapy.» Phys Med Biol 63.2 (2018): 025022.

Varian Recognition Award (Swiss Society of Radiobiology and Medical Physics).

- C. Winterhalter et al 2018c, «Comment on `Collimated proton pencil-beam scanning for superficial targets: impact of the order of range shifter and aperture'» Phys Med Biol, 63.20 (2018): 208001
- C. Winterhalter et al 2018d, «Contour scanning, multi-leaf collimation and the combination thereof for proton pencil beam scanning.» Phys Med Biol 64 (2018): 015002