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Outline

1 Problem: Decouple matrix generation, matrix utilization, and parallelism.

2 Solution: Policy pattern.

3 Some intermediate results.
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CT Reconstruction . . .

. . . basically solves a linear system A · x = b approximately.

In list-mode proton CT, Aij relates the RSP xj of voxel j and the WEPL
bi of proton i .

In X-ray CT, Aij relates the radiodensity xj of voxel j and the
attenuation bi of ray i .

A is big but sparse.

Use matrix-free solvers which e. g. perform (A·), (AT ·) or compute
(∥Ai,·∥2)i .
These tasks can be easily parallelized.

Designing an algorithm involves a lot of choices!
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. . . many “orthogonal” choices.
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Matrix Definition

The matrix element Aij is related to the length of intersection between
voxel j and “ray”/path i .

In X-ray CT, we might generate matrix row-wisely (find voxels on ray,
for each ray) and column-wisely (find rays through voxel, for each voxel).

In particle CT, only the row-wise approach is efficient.

Path estimation: linear path, cubic spline, (extended) most likely path.

Path discretization:

approximate intersection
lengths
fixed entry for all traversed
voxels
mean chord length
“fuzzy voxels”
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Make it Modular!

To avoid code duplication, split matrix definition and matrix utilization in the
code. Possible interfaces:

Storing the matrix would be straightforward, but is infeasible for big
problems as memory is limited.

Policy pattern ⇝ next slides.

The logic to e. g. copy data to GPU and launch kernels should also be
decoupled from the matrix definition.
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Policy pattern

A (row-ordered) sparse matrix class M must define rows(), cols(), and

template<typename fun_t>
__host__ __device__
void assembleRow ( int row , fun_t fun ) const {

// compute elements of row and for each
// of them, call
fun (col , val ) ;

}

M inherits from SparseRowOrdered<M> which defines functions like
multiply_serial, multiply_openmp, multiply_cuda, and a dispatcher
multiply.
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Multiplication in Serial

bool multiply_serial ( DataVector<const Scalar> const& x ,
DataVector<Scalar> const& y ) const final {

for ( int row=0; row<rows ( ) ; row++){
Scalar result = 0 . ;
child()−>assembleRow ( row ,

[ x ,&result ] ( int col , Scalar val)−>void {
result += x [ col ] ∗ val ;

}
) ;
y [ row ] = result ;

}
return true ;

}
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Multiplication with OpenMP

bool multiply_openmp ( DataVector<const Scalar> const& x ,
DataVector<Scalar> const& y ) const final {

#pragma omp parallel for
for ( int row=0; row<rows ( ) ; row++){

Scalar result = 0 . ;
child()−>assembleRow ( row ,

[ x ,&result ] ( int col , Scalar val)−>void {
result += x [ col ] ∗ val ;

}
) ;
y [ row ] = result ;

}
return true ;

}
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Multiplication with CUDA
bool multiply_cuda ( DataVector<const Scalar> const& x ,

DataVector<Scalar> const& y ) const final {
// copy *this (i.e. the matrix itself) to the device
Child∗ this_on_device = . . . ;
// copy x to the device ...
multiply_CudakernelRow<ThisClass>
<<<dimGrid ( rows ( ) ) , dimBlock ( rows())>>>
( this_on_device , x . pdevice ( ) , y . pdevice ( ) , rows ( ) ) ;

// copy y from the device ...
return true ;

}
template <typename SparseRowOrdered_t>
__global__ void multiply_CudakernelRow ( SparseRowOrdered_t const∗ A ,

double const∗ x , double∗ y , int nrows ){
unsigned int row = blockIdx . x∗blockDim . x + threadIdx . x ;
if ( row<nrows ) {

double result = 0 . ;
A−>child()−>assembleRow ( row ,

[ x ,&result ] __device__ ( int col , double val)−>void {
result += x [ col ] ∗ val ;

}
) ;
y [ row ] = result ;

}
}
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Intermediate Results

CTP404, reconstructed from
about 60e6 protons using
DROP, 640× 20× 640, several
hours on single NVIDIA A100.
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Intermediate Results

Black-box differentiation of DROP (left) should probably work, but LSCG
(right) adds noise.
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Intermediate Results

Derivatives w. r. t. proton track position coordinates do not carry much
information, if a mean chord length approach is used:
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Intermediate Results

When using a “fuzzy voxels” approach, there are still jumps but the
derivatives now reflect the function’s behaviour in a wider range:
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